Syntenin promotes VEGF-induced VEGFR2 endocytosis and angiogenesis by increasing ephrin-B2 function in endothelial cells

نویسندگان

  • Nara Tae
  • Suhyun Lee
  • Okwha Kim
  • Juhee Park
  • Sunghun Na
  • Jeong-Hyung Lee
چکیده

Syntenin, a tandem PDZ-domain-containing scaffold protein, is involved in the regulation of diverse biological functions, including protein trafficking, exosome biogenesis, and cancer metastasis. Here, we present the first study to explore the significance of syntenin in endothelial cells. Syntenin knockdown in human umbilical vein endothelial cells (HUVECs) impaired vascular endothelial growth factor (VEGF)-mediated proliferation, migration, invasion, vascular permeability, and nitric oxide (NO) production. Syntenin knockdown also suppressed expression of the VEGFR2 target genes VEGF, MMP2, and Nurr77 as well as VEGF-induced angiogenesis in vitro and in vivo. And it decreased cell-surface levels of ephrin-B2. Biochemical analyses revealed that syntenin exists in complex with VEGFR2 and ephrin-B2. Syntenin knockdown abolished the association between VEGFR2 and ephrin-B2, suggesting syntenin functions as a scaffold protein facilitating their association in HUVECs. Consistent with these observations, knocking down syntenin or ephrin-B2 abolished VEGF-induced endocytosis and VEGFR2 phosphorylation and activation of its downstream signaling molecules. Treatment with MG132, a proteasome inhibitor, rescued the downregulation of ephrin-B2 and VEGFR2 signaling induced by syntenin knockdown. These findings demonstrate that syntenin promotes VEGF signaling and, through its PDZ-dependent interaction with ephrin-B2, enhances VEGF-mediated VEGFR2 endocytosis and subsequent downstream signaling and angiogenesis in endothelial cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regulation of vascular endothelial growth factor receptor function in angiogenesis by numb and numb-like.

OBJECTIVE Vascular endothelial growth factor (VEGF) signaling is a major regulator of physiological and pathological angiogenesis. VEGF receptor activity is strongly controlled by endocytosis, which can terminate or enhance signal transduction in the angiogenic endothelium, but the exact molecular regulation of these processes remains incompletely understood. We have therefore examined the func...

متن کامل

Quinazoline derivative compound (11d) as a novel angiogenesis inhibitor inhibiting VEGFR2 and blocking VEGFR2-mediated Akt/mTOR /p70s6k signaling pathway

Objective(s): We previously reported a series of quinazoline derivatives as vascular-targeting anticancer agents. In this study, we investigated the mechanism underlying the anti-angiogenic activity of the quinazoline derivative compound 11d. Materials and Methods: We examined the effects of quinazoline derivative 11d on vascular endothelial growth factor receptor-2 (VEGFR2) activation via VEG...

متن کامل

Regulation of vascular endothelial growth factor receptor 2 trafficking and angiogenesis by Golgi localized t-SNARE syntaxin 6.

Vascular endothelial growth factor receptor 2 (VEGFR2) plays a key role in physiologic and pathologic angiogenesis. Plasma membrane (PM) levels of VEGFR2 are regulated by endocytosis and secretory transport through the Golgi apparatus. To date, the mechanism whereby the VEGFR2 traffics through the Golgi apparatus remains incompletely characterized. We show in human endothelial cells that bindin...

متن کامل

Therapeutic angiogenesis promotes efficacy of human umbilical cord matrix stem cell transplantation in cardiac repair

Objective(s):Although previous studies have confirmed the beneficial effects of human umbilical cord matrix stem cell (hUCM) transplantation post myocardial infarction (MI), but this stem cell resource has no potential to induce angiogenesis. In order to achieve the process of angiogenesis and cardiomyocyte regeneration, two required factors for cardiac repair agents were examined namely; hUCM ...

متن کامل

3D study of capillary network derived from human cord blood mesenchymal stem cells and differentiated into endothelial cell with VEGFR2 protein expression

New blood forming vessels are produced by differentiation of mesodermal precursor cells to angioblasts that become endothelial cells (ECs) which in turn give rise to primitive capillary network. Human cord blood (HCB) contains large subsets of mononuclear cells (MNCs) that can be differentiated into endothelial-like cells in vitro. Human mononuclear progenitor cells were purified from fresh umb...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017